- THE BIGMAC USER'S MANUAL

by

Eugene Myers
Department of Computer Science
University of Colorado
Boulder, Colorado 80309

CU-CS- 145 -78 November, 1978

This work was supported by NSF grant MCS77-02194 and
Army Grant DAAG29-78-G~0046.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 1978 2. REPORT TYPE 00-11-1978 to 00-11-1978
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The BIGMAC user’s Manual 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0O,80309-0430

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 95
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

I.

IT.

ITI.

TABLE OF CONTENTS

SYSTEM OUTLINE

0. OVERVIEW e

1. SCANNER: RECOGNITION COMPONENT

2. SCANNER: TRANSFORMATION COMPONENT
3.
4
5

MACRO ACTION SET STRUCTURE

. MACRO TRANSFORMATION PRIMITIVES
. NAME GENERATION AND EXPRESSION ANALYSIS .

THE STREX MACRO LANGUAGE

0.
1.
2.

PRELIMINARIES

FORTRAN BASE

STRING FEATURES .

1. String Declarations
2. String Assignments
3. String Expressions
4. External Functions

. MACRO FEATURES

1. Transformation Primitives

2. Unique Name Generator

3. Expression Analysis Primitives
4. Environment Primitives

. MACRO FILES .

APPENDICES

o O W

. SCANNER TRANSFORMATIONS .

ERROR MESSAGES

. BIGMAC ON THE C.U. CDC-7600 .
. SAMPLE APPLICATIONS .

oy W O oY B

— ot

17
19
20
21
22
24
27
28
29
31
32
36
39

40
42
48
50

I. SYSTEM OUTLINE

97 OVERVIEW

The BIGMAC system is a programmable utility for performing textu-
al transformations on ANSI FORTRAN code. BIGMAC was developed for the
specific purpose of replacing procedure calls with in-1ine code. For
the purposes of modularity and hierarchical development it is frequent-
1y desirable to code simple routines for Tow level data abstractions
such as stacks and 1ists. However, it is undesirable to pay the runtime
costs of parameter passing and routine Tinkage for such frequently in-
voked routines. BIGMAC remedies the situation by allowing one to pro-
gram and develop a prototype of the modular variety and then produce
the efficient production code by transforming the prototype with BIGMAC.
The degree of speed-up will depend on the machine and compiler in
question. In a recent large scale application, BIGMAC speeded up the
DAVE system by 47%. BIGMAC can, of course, be used for conventional
macro applications. Of greater interest, is that BIGMAC is general
enough to enable the programming of Timited language extensions.

The design of BIGMAC incorporates many of the principles found in
typical macro facilities. It is rather unusual in that macros are not
templates for textual substitution but are executable routines. This
very dynamic approach affords a great deal of flexibility with Tow de-
velopmemt overhead, as an existing Tanguage can be used as the basis
for the macro language. The base language provides conditional execu-
tion and Tocal and global data management. The developer need only con-
cern himself with the macro system interface. However, in the case of
a language with weak string capabilities (e.g., FORTRAN), the designer
must also bolster the base language's capabilities in this regard.
BIGMAC macros are routines written in such an extension of FORTRAN.

Legend: [__] Data

STREX Macro File D control
i —» Data Flow
ww Control Flow

. BIGMAC Compiler

Macro ‘o {
ModuTe Recognition Table

BIGMAC ScanneEZ)

T

Tnput

Macro Actions

(3%%GMAC PrimitiYEg>

I

Qutput

Figure 1: BIGMAC Outline

The structure of the BIGMAC system is depicted in Figure 1. At
the head of BIGMAC is a table-driven scanner. This scanner in con-
junction with a user-programmed macro module forms a text transform-

ing machine. A macro module consists of a recognition table and a set

of macro actions. A recognition table is an array of phrases to be

recognized, called the recognition domain, and a function mapping each

phrase into the name of a macro action in the macro module. Each macro
action is a program for performing a transformation on the text stream
to which the scanner is currently being applied. These transformations
are carried out with the aid of a number of system primitives.

The operation of a BIGMAC text transforming machine can now be
described as follows. The scanner will search a submitted input in a
forward scan until either --

1: The end of input is reached --
The machine stops.

2: A suffix of the text thus far scanned matches a

phrase in the recognition domain --
The associated macro action is invoked. Upon return
the scanner resumes where it left off. The BIGMAC

scanner does not rescan the recognized phrase.

A BIGMAC user writes macro modules in a language called STREX
(STRing EXtended) FORTRAN. This linguistic framework is the subject
of the second part of this manual. For the present it suffices to
know that there is a system compiler for transforming STREX specifica-

tions into macro modules.

57 SCANNER: RECOGNITION COMPONENT

The BIGMAC scanner can recognize any subroutine call or function
reference in an input of ANSI FORTRAN code. To specify a particular
routine invocation for recognition a user just gives the name of the
routine. Furthermore, a user restricts the admissible syntax of

recognized invocations by indicating --
1: whether the routine is a subroutine or function.

2: the number of arguments in the invocation.

If the scanner recognizes an invocation which is not admissible (i.e.,
violates either 1 or 2) then a message is issued and the associated
macro is not invoked.

An activation phrase is the text of a recognized and admissible

invocation. More explicitly, in the case of a function reference, it
is the text from the Teftmost letter of the routine name to bhe right
parenthesis ending the 1ist of actual arguments. For a subroutine call
it is the text from the 'C' in 'CALL' to the end of the line, i.e.,

it is the entire CALL statement.

The rule for associating an activation phrase with a macro action
is particularly simple. The name of the routine in the activating phrase
is taken to be the name of the macro action to be invoked. The actual
arguments of a particular invocation are passed to the macro action
as text strings.

For function references, the associated macro returns a string
which is substituted for the activation phrase. For subroutine calls
the activation phrase is deleted.

Example 1: Suppose a user has specified

the recognition table -- Macro Name S/F # of Args.
K S 2
L F 1

M F 2

10

10

10

10

The action of the scanner with this recognition
table is illustrated below --

CALL K (L (

llM

CALL K (L

I o ol

CALL K (.<L>

o O

VAV

J;\/WWWW\(’V\Q,
M(I,3E1)+5), I+3)

jo)

<M>+5 , [+3)

, I+3) Legend:

Activation Phrase
Actual Argument
Result of Macro X

Invoke X

%7 SCANNER: TRANSFORMATION COMPONENT

The BIGMAC scanner views an input text stream as a sequence of
text fragments. There are four types of fragments --

An ANST Standard comment line.

1: Comment

2: Label - An ANSI statement labe].

3: N-Statement - An ANSI statement containing no activation
{ phrases.

4: A-Statement - An ANSI statement containing at least one

activation phrase.

Note that these fragment definitions will unambigously partition any in-
put stream of ANSI Standard code.

The BIGMAC scanner is unusual in that before invoking a macro action
it transforms the input fragments so that the following condition is
satisfied --

A-Statement Condition: The placement of a text fragment just before

an A-statement fragment in the transformed input sequence,
must guarantee that the fragment is executed just before the

execution of the A-statement fragment.

This preconditioning of the input considerably simplifies the requir-
ed text transforming primitives (see section 4). -Henceforth, the dis-
cussion of the input seguence will always refer to the precon-
ditioned input sequence. Those interested in the exact transforms

employed are referred to Appendix A.

Example 2: Suppose 'SUB' is in the recognition domain. The original
text on the left is transformed by the scanner into the
text on the right.

Original Conditioned
Do 10 1I=1,3 DO <&1> I =1,3
DO 20 J = 1,4 DO <&2> J = 1,4
F (I.EQ.J) CALL SUB(I) IF (.NOT.(I.EQ.J.)) GO TO <&3>
F (I.EQ.3) GO TO 10 CALL SUB(I)
20 IF (J.EQ.4) CALL SUB(4) - - <&3> CONTINUE
10 CONTINUE IF (I.EQ.3) GO TO 10

F (.NOT.(J.EQ.4)) GO TO <&2>
CALL SUB(4)
Legend: <&2> /CONTINUE

<&i> A Tabel guaranteed to be 10 CONTINUE
unique with respect
to those already in <&1> CONTINUE
the program unit con-
taining it.
In section 0 it was stated that the scanner activates a macro
as soon as an activation phrase is reached. This implies that if a
number of function references are imbedded in an expression, then they
will be recognized and activated in the order that they would be reached
by a left to right post-order traversal of the expression's parse

diagram. Example 3 illustrates this.

Example 3: Assume the recognition table of Example 1. Then in the
statement --

CALL K(L(M(I,J)), M(I,L(J)))

--the scanner will activate the macros in the order in-
dicated on the parse tree below --

x////' sub
fct ‘//// fct
Lfct

fct va
/ N l
Ivar. Jvar. JV&V»

Thus if a number of different macro actions place text fragments just
prior to the same A-statement fragment, then those fragments will
occur in the order of activation of the corresponding routine refer-
ences. But by the observation above this order is a reflection of
the order of semantic evaluation of the A-statement's parse tree.
Hence the requirement of the A-Statement Condition is in essence
extended to the expression level.

3y MACRO ACTION SET STRUCTURE

Not every macro name in a macro action set need be in the recog-
nition table. Those names that are in the recognition table are termed
primary. A1l other macros in the action set are auxillary and are
presumably used to modularize a complicated macro action. A frequent
user can build libraries of auxillary macro actions and use them to
augment the action set of a particular macro module. Of course, a
macro module will have a set of action names which is a superset of
the names in the recognition table.

The compiled macro actions utilize a number of system routines
which implement --

1: A string data type sub-language.

2: A text transformation package.

3: A variety of primitives for analyzing the structure of
the input stream as a FORTRAN program.

The semantics of BIGMAC's string extension are quite conventional and
are discussed at length in the second part of this manual. The other
features are the subject of the following sections.

The BIGMAC scanner recognizes a number of special activation
phrases. These phrases are provided to coordinate macro actions with
respect to the program structure of the input text. The macro actions
which correspond to these phrases have been given special reserved
names. They must be subroutines with no arguments. We have in
tabular form --

Macro Name Activation Phrase [(AP) Substitution for AP

SYSBEG Empty string just left As for a subroutine.
of the first character
in input file.

SYSEND Empty string just right As for a subroutine.
of the last character
in input file.

BLKMAC Empty string just left Empty string.
of the first character
in the END statement of
a BLOCK DATA program unit.

-10-

(contd)
Macro Name Activation Phrase (AP) Substitution for AP

MANBEG Empty string just left As for a subroutine.
of the first character
in the first executable
statement in a main pro-
gram.

MANEND A STOP statement in a "STOP'
main program.

ROUBEG Empty string just left As for a subroutine.
of the first character
in the first executable
statement in a subprogram.

ROUEND A RETURN statement in a
subprogram. "RETURN'

PRGEND An END statement in an "END'

executable program.

-11-

Example 4: The contrived program below has been annotated to show the
points where the special macros would be invoked if
present in the action set --

SYSBEG W
COMMON /IT/ I
INTEGER I,J,K

MANBEG B
READ (5,100) K
100 FORMAT (I2)
DO 10 J = 1,K
10 J = 1+ SUM(J-1)
WRITE (6,200) K,I
200 FORMAT (TH1,2HF(,12,2H)=,14)

MANEND [STOP]

PRGEND
INTEGER FUNCTION SUM(J)
INTEGER I,J

ROUBEG N
SOM = 0
IF (J.EQ.0) ROUEND
D0101=1,J

10 SUM = SUM + J
ROUEND [RETURN
PRGEND

BLOCK DATA
COMMON /IT/I
DATA 170/
BLKMAC ® Legend:
PRGEND [END] xxxx Special Macro
L Ap
SYSEND W

B Null string AP

-12-

The placement of commons in the SYSBEG macro makes those commons
(and only those commons) global to the macro process. That is, the
extent of these commons will be that of BIGMAC's entire execution.
These common storage cells can be used for global communications
between macro actions.

For example, one may wish to have a flag, INMAIN, which is true
while the scanner is in the main routine of the input text and false
at all other times. Putting INMAIN in a common block in the SYSBEG
macro will guarantee that INMAIN will be available to all other
macros containing the common block and further that the value of
INMAIN will be preserved from invocation to invocation. INMAIN is
initially set to false by the SYSBEG macro. The MANBEG macro should
turn it on and the PRGEND macro will turn it off. It should be
noted that common variables which are strings may not be equivalenced
either implicitly or explicitly.

-13-

4y MACRO TRANSFORMATION PRIMITIVES

Just as the input stream is viewed as a sequence of text fragments,
so is the output of the system. These fragments are also of four kinds --

1: Comment An ANSI Standard comment 1ine.

2: Label An ANSI statement Tabel.

3: Statement - An ANSI statement.

4: Error

1

An error message. These messages are printed
out but do not occur in the final BIGMAC output.
The output sequence is built by appending fragments to the right end

of the current sequence. These fragments are appended by the scanner

and also the user via the text transformation primitives.

The scanner traverses the input in a forward scan. Every input
fragment is appended to the output sequence after the scanner has
traversed it. Thus if the scanner detects any errors while traversing
a fragment then the scanner's error message fragments will preceed
the fragment as the scanner appends the error fragments first. Similar-
ly, for A-statement fragments the scanner will first activate all the
associated macro actions before the resulting neutralized A-statement
is appended as a statement fragment. Hence, if the macro actions
append some fragments then these fragments will immediately preceed
their respective neutralized A-statement fragment. Thus the necessity
and utility of the A-Statement Condition.

The text transformation primitives allow the user's macro actions
to append any of the fragment types onto the output sequence. There
is a primitive for each type, i.e., the COMMENT, LABEL, EXECUTE, and
ERROR statements of STREX described in the second part of this manual.
Each primitive takes a user-constructed string and regardless of its
syntax appends it to output as a fragment of the type specified by
the primitive.

Any sequence of these primitives can be executed. A critical
feature of BIGMAC is that it places a CONTINUE statement fragment
between any two consecutive label fraaments. This is semantically
natural if one considers a FORTRAN in which statements'can have any
number of labels. Along the same lines, if the right most fragment

-14-

of the current output sequence is a Tabel fragment and one is about
to append either a comment or error fragment then this fragment is
not appended, but placed to the immediate left of the Tabel fragment.
This quarantees that the label will refer to the next statement frag-
ment appended and again is semantically natural if one considers a
FORTRAN in which comments can occur arbitrarily within the code.
These two precautions insure that if a user aenerates syntactically
correct fragments, then the result of appending an arbitrary sequence
of such fragments is also syntactically correct.

The above mechanism only allows the insertion of text into pro-
gram parts, as activation phrases only occur in program parts. This
implies that a user has no way of inserting specification statements
into a program unit. This situation is alleviated by a special prim-
itive which allows a macro action to insert statement fragments just
before the first specification statement (an executable statement if
there are no specification statements) in the program unit containing
the associated activation phrase. The location for insertion is
referred to as the declaration insertion point (DIP) of the program
unit. See the DECLARE statement of STREX in the second part of this
manual. '

Example 5: Assume the recognition table of Example 1. Moreover
assume that each macro action executes the sequence of
primitives --

Macro Name Action Sequence
M <Spec.>,<Comm, >
L <Stmt.>,<Label>

K <Label>,<Stmt.>

=15-

The preprocessor will transform code as illustrated below --

SUBROUTINE SIMPLE(I,J)

{DIP}
10 CALL K(L(M(I,J)),M(I,L(J)))

RETURN

END 10
<Labe1(L])>
<Labe1(L2)>
<Labe1(K])>

Legend:

(Xj) denotes the jth activation of X.

SUBROUTINE SIMPLE(I,J)
<Spec(M])>

<Spec(M2)>

<Comm(M])>

<Stmt(L1)>
<Stmt(L2)>
<C0mm(M2)>
CONTINUE
<Stmt(K])>
RETURN

END

-16-

57 NAME GENERATION AND EXPRESSION ANALYSIS

A generator for symbolic names and Tabels is available to the
BIGMAC macro writer. The generator distinguishes four classes of
identifiers as follows --

1: Label - An ANSI Standard statement:label.’

2: Integer Name

An ANSI symbolic name whose first

character is one of the letters
I, Jd, K, L, M, or N.

|

Real Name An ANSI symbolic name which is not

an integer name.

4: Block Name

An ANSI symbolic name. .

For classes 1 through 3, each invocation of the generator returns an
identifier of the appropriate type which is unique with respect to
those of the program unit currently being scanned and those generated
since the program unit's first character was traversed. For the class
of block names, an invocation produces an identifier which is unique
with respect to all the common block names in the input file and those
generated thus far. See the GENER function in the second part of this
manual.

A parser for FORTRAN expressions is provided primarily so that
a user may analyze the arguments of a macro action. For example, one
may wish to determine if an argument is a simple variable or a valid
subscript expression. The parser will produce post-fix polish parse
strings which may be examined and modified by the sophisticated macro
writer via the string manipulation components of the STREX Tanquage.
Any well-formed parse string may then be requested to yield the string
it derives, i.e., the reverse of parsing. See the functions PARSE,
GETTOK, ADDTOK, and RPARSE in the second part of this manual.

The BIGMAC user may also examine the environment surrounding a
macro activation phrase. One may inquire as to the existence and
usage of common block and variable names in the (input-text) proce-
dure containing the activation phrase of the current macro,invocation;

See the functions VTHERE, CTHERE, and VTYPE in the latter part of this
manual.

IT. THE STREX MACRO LANGUAGE

-17-

0y PRELIMINARIES

STREX (STRing EXtended) FORTRAN provides the Tinguistic frame-
work for programming BIGMAC macro-modules. Formally, STREX is a
superset of a subset of ANSI FORTRAN. Section1outlines the relevant
subset of ANSI FORTRAN. The other sections describe the superset
in three parts --

1: String data type concepts.
2: Macro concepts.
3: Macro module concepts.

Throughout this part of the manual, there arise many occasions to
reference the ANSI FORTRAN Standard (ANSI X3.9-1966). Such references
will be abbreviated to Tists of section numbers in square brackets.

An extended version of Backus Naur Form grammar rules will be
used to describe the syntactic form of STREX features. Nonterminals
will consist of a description. of the token surrounded by angle
brackets, e.g.,

<variable-reference>

Terminal strings will be enclosed in single quotes, e.g.,

lDOI
A plus sign will be used to compress several rules having the same
left-hand sides, e.g.,

<A> « + <(C> .= <A> <«

<A> « <C>

A superscript star will denote zero or more repititions, e.g.,
<A> « * = <A> <« "'+ <A>
Curly braces will be gsed for bracketing purposes, e.g.,

<A> « { <C>}* <D> = <A> « <D>

<A> < <B$ <C> <A>

-18-

In STREX FORTRAN there are six different kinds of data types
or modes -- ‘

INTEGER [4.2.7] COMPLEX [4.2.4]
REAL [4.2.2] LOGICAL [4.2.5]
DOUBLE PRECISION [4.2.3] STRING

The term STANDARD will denote all the modes except STRING. In many
cases the mode of the datum that a nonterminal will yield upon seman-
tic evaluation must be specified. This will be done by writing --

<A e TYPE> -- which specified that the nonterminal <A> when evaluated
will yield a datum of mode TYPE.

-19-

1y FORTRAN BASE

The subset of ANSI FORTRAN that constitutes the base of
STREX FORTRAN consists of all FORTRAN constructions which do not
involve any of the forms listed below --

1: READ, WRITE, REWIND, BACKSPACE, & ENDFILE statements [7.1.3]
2: FORMAT statements [7.2.3]
3: Hollerith constants [4.2.6,5.1.1.6,7.2.2.,8.4.2]

The primary purpose of a macro action is to transform the input
stream on the basis of the parameter strings passed to the macro

by the BIGMAC scanner. These side effects are handled entirely by
the text transformation primitives of STREX (see section 3.1).

Hence 1/0 statements are not necessary. STREX's string capabilities
supersede the need for Hollerith constants.

-20-

2y STRING FEATURES

Due to the text manipulative nature of macro processing, the
notion of string data is fundamental. ANSI FORTRAN is very weak in
this regard. STREX must and does provide a more powerful Tinguistic
medium for expressing string manipulations.

A string datum is defined as an ordered sequence of FORTRAN char-
acters [3.1]. In what follows a string value will be written as its
sequence of characters surrounded by vertical bars. Blank characters
are significant. The convention is adopted that the ith character of
th counted from the left. The length of a string

value is the total number of characters in its sequence.

a string value is the i

Example 1: | A STRING | denotes a string value whose 3rd character
is 'S' and whose length is 8.

The string data type is supported in STREX by the addition of
constructions for declaring, assigning, and manipulating string data.
These constructions are described in the following subsections.

STREX's string component is implemented in an interpretive fashion.
This allows the semantic routines to trap run-time errors such as
an attempt to use an undefined variable in an expression or an
out-of-bounds subscript. However, a semantic error of this sort does
not halt execution. An error fragment is issued, some conservative
recovery action is taken, and execution continues. In the semantic
descriptions that follow, error conditions are only noted. For a
detailed description of the errors and their recovery actions see
Appendix B.

-21-

2']A/ String Declarations:

Type statements are defined in section 7.2.1.6 of the ANSI
Standard. In STREX type statements can also declare simple variables
and arrays to be of string type according to the syntax --

*
la. <type statement>< 'STRING' {<declaration> ','} <declaration>

String mode functions referenced in a program unit may be declared
in that program unit with the syntax --

1b. <type statement><« '"FSTRING' {<name> ','}* <name>

String statement functions are not allowed.

Function statements are introduced in section 8.3.1 of the ANSI
Standard. STREX allows functions to return string values via the
syntax =--

2. <fct statement><« 'STRING FUNCTION' <fct name>
*
"('{<formal_param>','} <formal param>"')'

The semantic 1mp1icat10ns of these forms should be obvious from
analogy with their Standard couterparts cited above.

Example 2: STRING FUNCTION SFUN(AVAR,ALEN,SVAR)

STRING AVAR(10),SVAR
FSTRING SFUNZ2
INTEGER ALEN
DO 10 I=T1,ALEN

10 AVAR(I) = SFUN2(I)
SFUN = SVAR
RETURN
END

-29-

2.2” String Assignments:

In STREX there are two types of string assignment statements.
The syntax and semantics of the first form is a direct extension
of the assignment statements defined in the ANSI Standard
[7.1.1.1, 7.1.1.2] -- |

1. <assignment_statement> « <variable_reference e STRING>

| '='<expression e STRING>
If the variable reference is also a parameter of the program unit
containing the assignment and further if this parameter's value
was obtained by the pass-by-value mechanism then an error has
occurred and is flagged. Otherwise, execution of this construction
causes the referenced variable to bind to the string value resulting
from the evaluation of the expression.

The second assignment form stems from the requirement in general

string manipulators of being able to replace substrings of a string.
STREX uses the syntax --

2. <assignment_statement> <<variable reference e STRING>

'('<expression1eINTEGER>'..'<expressionZeINTEGER>')f
‘='<expression3eSTRING>

The semantics of this statement are somewhat involved. If the refer-
enced variable is undefined or is a parameter satisfying the condition
given in the paragraph above then an error is issued. Now suppose the
variable is bound to a string datum S, that expression, evaluated to L,
and expression2 evaluates to R. If L<0 or R>Tength (S)+1 or L>R then
an error occurs. Otherwise the substring lying exclusively between the
Lth and Rth characters of S is replaced by the value of expression3.

-23-

Example 3: (:) SVAR = AVAR

(@) SVAR (0..1) = AVAR

(3) SVAR (1..3) = AVAR

(@) AVAR (0..3) = SVAR

Value of SVAR Value of AVAR
undefined | ABC| initially |

| ABC| ! after (1)
| ABCABC| " after (2)
| AABCCABC| " after (3)
" | AABCCABCC| after (3)

24

2.%7 String Expressions:

The syntax of STREX string expressions forms a simple 3-level
precedence grammar --

Level 1:
<expression e STRING> <« <term ¢ STRING> {'.'<term e STRING>}*
(Concatenation)
Level 2:
<term e STRING> <« <primary e STRING>
{'(‘<expression]’e INTEGER>'..'<expression, e INTEGER>"')"}*

(Substring Selection)

Level 3:
<primary e STRING> <« <reference e STRING> (Reference)
+ '(' <expression ¢ STRING>')' (Parenthesis)
+ <constant ¢ STRING> (Constant)
+ '='<expression e STANDARD>'=' (Conversion)

We discuss each of the constructions in the paragraphs be]ow;

1. Reference:

As for arithmetic primaries [6.1], string primaries can be a
variable, an array element, or a function reference whose mode is
STRING. Exectution of a reference yields the value to which the
reference is currently bound. If the reference is undefined then
the recovery action is dependent on the semantic action requiring
its value (see appendix B).

2. Parenthesis:

As for all ANSI expressions, parentheses can be used in string
expressions to enforce an arbitrary order of evaluation.

-25-

3. Constant:

A string constant denotation has the following syntax --
<constant e STRING> « '$'<character less dollar>*'§'
<character less _dollar> « <{Fortran Characters}-{$}> + '$$'

Since dollar-sign is the delimiting character, one has to use two
dollar-signs to denote one within the constant string.

Example 4: $HELLO$ has the value |HELLO]
$3%$$$ has the value |3%]

A string constant may not be used in a data initialization state-
ment. This restriction is somewhat cumbersome, but the effect is
easily simulated by explicitly initializing the string variables in
the SYSBEG macro (see part 1, section3).

4., Conversion:

An arithmetic or logical expression between equal-signs yields
a string which is a constant denotation for the value of that expression.
In the case of COMPLEX, DOUBLE PRECISION, and REAL expressions the
denotation is only a close approximation and is machine dependent.*

Example 5:

=4/3= evaluates to |.133333333333333E+1| on the CDC 6600, but
on IBM 370 the result is |.1333333E+1|

=1.GT.0= evaluates to |.TRUE.| on any machine.

5. Substring Selection:

-Suppose the primary evaluates to the string S and further that
expressiony evaluates to L and expression2 evaluates to R. If S is
undefined or L < 0 or R > Tength (S) + 1 or L < R then an error is
issued. Otherwise the resulting term is the substring of S lying
exclusively between the Lth and Rth characters. If more than one
pair of selection indices is involved then they group from left to

* Currently, only INTEGER expressions can be converted.

-26-

right. For example, if V has the value |ABC| then V (1..4) (1..3)
is equivalent to (V(1..4)) (1..3) and has the value |C].

6. Concatenation:

The concatenation of a sequence of strings is expressed by
separating each term by periods. If any term is undefined an error
is noted. If subexpressions involving concatenation occur at more
than fifty different and nested levels, then a stack error will occur.
This should never happen in practice, e.qg.

$$.(55.($$.9%)) has just 3 levels.
$$.$8.5%5.%¢ has just 1 Tlevel.

=

>

[

-27-

2.%7 External Functions:

STREX provides three simple external functions.

Tined in the chart below.

These are out-

Name No. of Type of Type of Definition
arguments arquments result

LENSTR 1 STRING INTEGER The Tength of
the argument.

EQSTR 2 STRING LOGICAL True only if
the two string
arguments are
identical.

SEARCH 2 STRING INTEGER 0 if the first

argument is not

a substring of
the second.
Otherwise, SEARCH
gives the index
of the leftmost
character in the
lTeftmost occur-
rence of the
first argument in
the second.

-28-

%7 MACRO FEATURES

BIGMAC's macro capabilities are discussed at some length in
the last three sections of the first part of this manual. In
particular, the semantics of text transformations and name generation
are specified to the extent that this section only presents the
STREX syntax for these primitives. The expression analysis package
will be presented more thoroughly in subsection 3.3 below.

-29-

3.57 Transformation Primitives:

The text transformation primitives of BIGMAC are realized
syntactically as STREX statements. The syntax of each statement 1is
1isted below along with a brief semantic description.

1. 'COMMENT' <expression e STRING>

- If the Tength of the expression is over 77 characters, an
error message is issued and the string is truncated on the right.
A fragment of the comment type is appended to output. The 'C’

in column 1 and blanks in columns 2 and 3 are automatically
generated before the fragment is printed by an output

formatter. These fragments are not a part of the final output.

2. 'LABEL' <expression e STRING>
- If the expression is over 5 characters long, an error is
issued and the string truncated on the right. If the string is
the empty string then no action is taken. Otherwise, a fragment
of the Tabel type is appended to output. Labels are right
justified by the BIGMAC formatter.

3. 'ERROR' <expression e STRING>

- The string may be of arbitrary length. The BIGMAC formatter
breaks the string into a number of Tines if necessary and tacks
a header in front of it. These fragments are not a part of the
final output.

4. 'EXECUTE' <expression e STRING>

- If the expression is over 1320 characters long an error is
issued and the expression is truncated on the right. A frag-
ment of the statement type is append to output unless the
string is the empty string in which case no action is taken.
The BIGMAC formatter automatically breaks the string into con-
tinuation 1ines if necessary.

lom

joy

-30-

'"DECLARE' <expression e STRING>

- The effect is the same as EXECUTE above except that the
fragment is inserted at the DIP of the program unit currently
being scanned.

"EXECUTE' <express1‘on1 € STRING>','<express1’on2 e STRING>

- This statement 1is an abbreviation for the two statement

sequence -- ,
LABEL <expression1>

EXECUTE <expression2>

=31-

3.%7 Unique Name Generator:

The BIGMAC unique name generator is a STREX-supported explicit
function whose result is a unique name. Formally --

<expression e STRING> <« 'GENER('<type>')'.
<t’ype>_<« lL| + III + IR! + lCl.

The type argument specifies which class of name is being requested
according to the scheme --

L - Label

I - Integer Name

R - Real Name

C - (Common) Block Name

If it happens that the generator has exhausted all the possible
names within a given program unit (it probably never will) then an
error message is issued and the generator starts to recycle through
the names for the overflowing class.

-32-

3.%7 Expression Analysis Primitives:

In order to syntactically analyze an expression one must have the
information provided by a parsing structure. A pakse tree is too com-
plex a structure to support. For an expression, its Polish prefix
form conveniently conveys its structure in a one-dimensional form.
Additionally, the Polish representation can be encoded as a string
of tokens, thus allowing one to examine and modify it with the string
manipulation features of STREX.

The components of a FORTRAN expression are grouped into a num-
ber of tokens. Each token has a unique integer code. The tokens and
their codes are --

Operands Operators
Code Token Code Token
<function or array reference argument> 10 k!
1 <simple variable> 11 Px!
2 <array reference> 12 e
3 <function reference> 13 "+' (binary)
4 <unsigned constant e INTEGER> 14 '-' (binary)
5 <unsigned constant ¢ REAL> 15 <relational-operator>
6 <constant e LOGICAL> 16 ".AND."
7 <unsigned constant ¢ DOUBLE PRECISION> 17 ".0R.'
8 <constant ¢ COMPLEX> 18 ".NOT.'
9 <constant e HOLLERITH> 19 '-' (unary)

Note that function or array arguments are not further decomposed but
left intact. The other pieces of information contained in a token are
a pair of indices which indicate the positions within the original ex-
pression between which lies the actual string corresponding to the
token. In summary a token is encoded as a triple of integers, the
first element of which is the token code, the second is the left index,
and the third the right index. For example, the token for the array
reference in the string |3+AB(4)| is <2,2,8>.

-33-

An expression is parsed as a string of token triples in Polish
prefix form hereafter referred to as a token-string. The boundaries
of the triples are not distinguished. That is, a string of n tokens
is physically a string of 3n integers; the user must break the string
into triples with his code. Further, the arguments of a function
or array reference immediately follow the reference token. This is
consistent with prefix notation if one considers an array a function
reference as an operator on the arguments.

Example 6:
The expression --

[A*(B+((C/D-MIN(K,L*S,Q))%1

S - -5----0----5----0

is in Polish prefix form --

LA+ B =/ |C|D[MIN|K|L*3|Q

t F
MIN is an operator Arguments are
on 3 arguments. not decomposed.

where each block is a token.

The expression's final token-string encoding is

|11, 1,341 1,0,2{13,4,6 {1, 3, 5114,11,13
112, 8,70 1 1, 7, 9% 1, 9,11 | 3,12,25 0,16,18
L 0,18,22 | 0,22,24 |

The parsing package consists of four routines. The header section
of each routine is given below along with a discussion of its effect.
Note the close association required between a token-string and the
original string from which it was created by the PARSE routine.

1. STRING FUNCTION PARSE (EXPSTR)
'STRING EXPSTR

EXPSTR is an input parameter whose value is a string denoting
a valid ANSI FORTRAN expression. The result of PARSE is the token-
string for the expression in EXPSTR. The index pairs of every token
refer to locations in EXPSTR.

-34-

INTEGER FUNCTION GETTOK(TOKSTR,I,LINDEX,RINDEX)

INE

INTEGER I, LINDEX, RINDEX
STRING TOKSTR

TOKSTR is an input parameter which is a token-string of say N
tokens. I is an input parameter and LINDEX and RINDEX are output
parameters. If I <0 or I > N then GETTOK returns -1. Otherwise,
GETTOK returns the token code of the Ith token (from the left) and
also has the side-effect of setting LINDEX and RINDEX to the left and
right indices of the Ith token.

3. STRING FUNCTION ADDTOK(TOKCOD,ACTSTR,EXPSTR)
- STRING ACTSTR, EXPSTR
INTEGER TOKCOD

TOKCOD is an input parameter which should be a valid token code.
ACTSTR is an input string which should represent an instance of the
token specified by TOKCOD. EXPSTR is used for both input and output.
ADDTOK returns a token triple whose code is TOKCOD and whose index
pair delimit the string ACTSTR. ADDTOK has the side-effect of append-
ing ACTSTR to the end of EXPSTR, i.e., 'EXPSTR = EXPSTR.ACTSTR'.

4. STRING FUNCTION RPARSE(TOKSTR,EXPSTR)
STRING TOKSTR, EXPSTR

TOKSTR and EXPSTR are both input parameters. TOKSTR must be a
token-string for which all index pairs refer to locations in EXPSTR
(hence the necessity for the EXPSTR argument in ADDTOK). The result
of RPARSE is the string derived by the token-string TOKSTR, i.e.,
RPARSE performs the reverse of the action of PARSE.

Token-strings are strings of integers not characters. Thus
although one can manipulate token-strings with STREX string features,
the user must be careful not to apply any features which actually
examines the value of a cell in the string, e.g., =<expression>= or
EXECUTE <expression>. Of course one shouldn't mix strings and
token-strings.

-35-

Example 7:

The function REPL replaces all occurrences of the variable LEN
with the constant 9 --

STRING FUNCTION REPL(EXPR)
STRING EXPR, TOKSTR
TOKSTR = PARSE (EXPR)
K = LENSTR(TOKSTR)/3
IF (K.EQ.0) GO TO 20
DO 10 I = 1,K
IT = GETTOK(TOKSTR,I,M,N)
IF (ITOK.NE.1) GO TO 10
IF (.NOT.EQSTR(EXPR(M..N),LEN)) GO TO 10
TOKSTR(3*I-3 .. 3*I+1) = ADDTOK(4,9,EXPR)
10 CONTINUE
20 REPL = RPARSE(TOKSTR,EXPR)
RETURN
END
A call of the form --
S = REPL($3*LEN+A(LEN)$)
results in S having the value --

| 3%9+A(9)|

-36-

3.4” Environment Primitives

A number of system functions are provided for analyzing the local
and global variables of the procedure currently being scanned when a
macro expansion takes place. There are functions for determining whe-
ther or not a given common block or variable name is present in the
procedure. One can also determine the type of a variable which is
local to the scanned program unit. The functions are --

1. LOGICAL FUNCTION CTHERE(NAME)
STRING NAME

CTHERE 1is true if and only if a common block named NAME is in the
currently scanned procedure. If name is undefined CTHERE is false.

2. LOGICAL FUNCTION VTHERE(NAME)

STRING NAME
VTHERE is true if and only if a variable named NAME appears in the
scanned procedure. If name is undefined VTHERE is false.

3. INTEGER FUNCTION VTYPE(NAME,ARRAY)
STRING NAME
LOGICAL ARRAY

VTYPE is an integer code for the type of the variable named NAME --

VTYPE
0 NAME is undefined.
1 NAME does not appear as a variable name in the
procedure
2 NAME appears as an INTEGER variable.
3 NAME appears as a REAL variable.
4 NAME appears as a DOUBLE PRECISION variable.
5 NAME appears as a COMPLEX variable.
6 NAME appears as a LOGICAL variable

-37-

The flag ARRAY will be true if and only if NAME is used as an array
name within the program unit.

Example 8:
Text: SUBROUTINE EXAMP
COMMON /A/ X,Y,Z(3)

I=FUNMAC(J)
END

Macro: STRING FUNCTION FUNMAC(S)
STRING S

LOGICAL CTHERE,VTHERE,L(7)
INTEGER VTYPE

DECLARE $COMMON /B/ R,S,T(3)$

L(1) = CTHERE (A)
L(2) = CTHERE (B)
L(3) = CTHERE ($/A/$)
L(4) = VTHERE (T)
L(5) = VTHERE (A)

IT = VTYPE (T, L(6))
12 = VIYPE ($$, L(7))

END

-38-

When the macro FUNMAC is invoked the Va]ues of L, I1, and 12
will be --

L(T) - .TRUE.
L(2-6) - .FALSE.
L(7) - .TRUE.
I - 1

I2 - 3

-39-

%7 MACRO FILES

A STREX macro file is a file or other line-oriented text stream
consisting of a number of MACRO Tines and STREX program units termin-
ated by a Tine containing a dollar-sign in column 7. A STREX macro
file is a complete specification of a macro module.

A MACRO T1ine is a 1line containing the phrase 'MACRO' in columns
7 through 11. These lines must occur just before a program unit. They
indicate that the following STREX routine is a primary macro action.
The name of the routine is put in the recognition table along with its
type (subroutine or function) and the number of arguments it requires.
The formal parameters of such a routine must all be simple string
variables and if the unit is a function it must return a string value.

Any routine in a macro file with the name

SYSBEG, PRGEND, ROUBEG,
SYSEND, MANBEG, or ROUEND
BLKMAK, MANEND,

must be a primary action which is a subroutine with no arguments.
Recall that these are the names of the special actions discussed in
section 3 of the first part of this manual.

ITI. APPENDICES

-40-

A

Y SCANNER TRANSFORMATIONS:

In section 2 of part 1 the A-statement condition is presented.
In order to meet this condition it suffices to insure that

1: Each A-statement is a basic block.*

2: Any Tabel preceeding an A-statement, is not
referenced by a DO-statement.

The transforms employed by the scanner are given below. The following

legend 1is used

|| - text fragment boundaries.

<> - non-terminal syntactic tokens.
&lab - a label guaranteed to be unique with respect to
those already in the containing program unit.

A Togical IF statement is the only statement which is compound
in terms of basic blocks. Hence to achieve 1 above it suffices to
'split' every logical IF statement in which the statement part is an
A-statement. The diagram below indicates the transform used --

|| IF (<expr>) <A-statement> ||

[| IF (.NOT. (<expr>)) GO TO &lab

|| <A-statement>

[l &1ab || CONTINUE ||

The solution for 2 is difficult to motivate it as it was
primarily the result of implementation issues. The set of transforms
employed by the BIGMAC scanner are just listed below.

* L. D. Fosdick, '"BRNANL, A Fortran Program to Identify Basic Blocks
in Fortran Programs', Univ. of Colo., Tech. Rpt. #CU-CS-040-74(1974)

-47-

Case 1: DO Tabel is referenced only by DO statement
Case 1.1: DO terminal statement is an N-statement

|| DO <DO-Tabel> <loop> || || DO &lab <loop> ||

|| <D0-Tabel> || < N-statement> || || &1ab || < N-Statement> ||
Case 1.2: DO terminal statement is an A-statement

|| DO <D0O-Tabel> =Tloop> || || DO &lab <loop> ||
° AMAAAA N

|| <D0-Tabel> || <A-Statement> || || <A-Statement> ||
|| &1ab || CONTINUE |

Case 2: DO Tabel is referenced by a statement other than a
DO-statement.

|| DO <DO-Tabel> <loop> || || DO &lab <Tloop> ||
: I :
| <D0-Tabel> || < Statement> || || <D0-Tabel>|| <Statement>
| &lab | CONTINUE ||

Conceptually the solutions for 1 and 2 can be applied in
parallel. However, some inefficiencies result. Consider then
that case where a DO terminal statement is also a logical IF re-
quiring splitting. The appropriate DO transform is applied (either
case 1.2 or 2 above) and then the following abbreviated transform is
used for the logical IF statement --

|| IF (<expr>) <A-statement> || s || IF (.NOT.(<expr>)) TO TO &lab
|| <A-statement> ||

Where &lab is the same as that used in the DO transform. The reader
is now referred to example 2 in the first part of this manual.

-42-

B ERROR MESSAGES

V4
There are two phases to using BIGMAC. One first compiles a
macro module using the STREX compiler and then one uses the compiled
macro module to expand some input text. Errors are detected at both
stages. The STREX compiler's error checking is not very extensive.

It basically only tries to insure that the string and macro compo-
nents of STREX programs are properly translated. The compiler error
set is Tisted below in the section entitled "Compiler Errors."

The errors that occur at the time a macro module is applied to
a stream of text are somewhat more extensive. There are two classes
of such errors. The first set of errors are those that arise when
the input text is found not to be ANSI FORTRAN code (Text Errors).
The second type of errors are macro routine errors trapped by the
BIGMAC interpretive primitives. They involve such items as undefined
variables and subscript range errors. The semantic action in progress
when an error is detected is given in parentheses along with the error
message. A corrective action is taken by the primitive and processing
continues. The specific recovery actions are given in the 1ist below.

Compiler Errors

Message Meaning

NAME TOO LONG - <name> The variable <name> is more than 6 char-
acters long.

LABEL TOO LONG - <Tabel> The label <label> is more than 5 charac-
ters long.

END OF FILE An end of file mark was reached while still
in the middle of a macro.

NO EXECUTABLE STATEMENT A program unit with no executable state-
ments (not even a RETURN) was encoun-
tered.

NO SYSBEG MACRO At Teast one common was used in the macro
file, but none were declared in a SYS-
BEG macro.

TOO MANY MACROS The STREX compiler's internal structures

have overflowed (not likely to happen).

DUPLICATE MACRO -
<macro name>

MACRO ARG NOT STRING

ILLEGAL SPECIFICATION -
<name >

SYSTEM COMMON NAME -
<common-block name>

IMPROPER STATEMENT

STMT ILLEGAL HERE

ILLEGAL EXPRESSION AT
<number:> <type code>

-43-

A name with the name <macro name> is de-
clared more than once.

A11 macro arguments and macro functions
must be declared to be STRING.

The variable <name> has been given con-
flicting type attributes in different
type statements.

Certain common block names are used by
the system and must not be used by the
user. They are -- BUFP, CONCAT, GLOP,
ICFILE, IOFILE, LEXIC, LIF, LISTC, MAC,
MACSAR, MFLAGS, PTR, PTRS, SYST, TABLE,
WRKKEY.

The compiler cannot make sense of the
statement.

A statement is out of place, e.g. a de-
clarative statement following an ex-
ecutable one.

The expression is il1l1-formed. The efFor
was first detected at the <number>t
character of the expression and at
that point the expression was of type
<type code> where the code is --

Noo- no type
S - STRING
I - INTEGER
R - REAL

C - COMPLEX

D - DOUBLE PRECISION
L - LOGICAL

Text Errors

Message

NAME TOO LONG
TRUNCATED TO 8 CHARACTERS -
<name >

LABEL TOO LONG
TRUNCATED TO 5 CHARACTERS -
<Tlabel >

END OF FILE
NO EXECUTABLE STATEMENT

IMPROPER MACRO REFERENCE -
<macro name>
TYPE DOES NOT MATCH

IMPROPER MACRO REFERENCE -
<Mmacro name >

WRONG NUMBER OF ARGUMENTS
NAME ALREADY TYPED - <name>

BLOCK NAME TOO LONG
TRUNCATED TO 6 CHARACTERS

~44 -

Meaning

Obvious

Obvious

End of file mark does not directly
follow an END statement.

A program unit with no executable
statements was encountered.

Macro is a subroutine while reference
is a function or vice versa.

Reference has more or less arguments
than the macro invoked.

The variable name has been typed

twice.

Obvious

-45-

Run Time Errors

Message Meaning
(Sources) (Recovery Action)
PASS 2 - UNDEFINED VARIABLE A string variable is undefined -
(ADDTOK) Returns a token which has a negative
token code.
(ASSIGN) No assignment takes place.
(ASSIGNI) No assignment takes place.
(COMMENT) No comment is placed on output.
{CONCATE) Null string is substituted.
(CTHERE) .FALSE. is returned.
(DECLARE) No declaration is placed on output.
(EQUALS) .FALSE. is returned.
(ERROR) No error is placed on output.
(EXECUTE) No statement is placed on output.
(FUNCTION) Null string is the result of the
function.
(GETTOK) Returns a negative token code.
(LABEL) No label is placed on output.
(LENGTH) @ is returned.
(PARSE) Null string is the result.
(RPARSE) Null string is returned.
(SELECTION) Null string is the result.
(VTHERE) .FALSE. is returned.
(VTYPE) f is returned.

PASS 2 - SUBSCRIPT OUT OF BOUNDS Obvious -
(ASSIGNI) No assignment takes place.

(GETTOK) Negative token code is returned.
(SELECTION) Null string is the result.

PASS2

PASS2

PASS2

PASS2

PASS?2

PASS2

PASS2

PASS2

- 46 -

LABEL TOO LONG
(EXECUTE)

(LABEL)
STATEMENT TOO LONG
(DECLARE)
(EXPANSION)
(EXECUTE)

COMMENT TOO LONG
(COMMENT)

EXPRESSION TOO DEEP

(CONCATE)
NAME GENERATOR OVERFLOW
(INTEGER) (GENERATE)
(REAL) (GENERATE)
(LABEL) (GENERATE)
(COMMON) (GENERATE)

CANNOT ASSIGN AN
EXPRESSION

(ADDTOK)
(ASSIGN)
(ASSIGNI)

BAD TOKEN
BAD TOKEN LIST

(RPARSE)

Obvious -
Label is truncated to 5 charac-
ters.
Label is truncated to 5 charac-
ters.

Obvious -
Declaration is truncated to 1320
characters.

Statement is truncated to 1320
characters.

Statement is truncated to 1320
characters.

Obvious -

Comment is truncated to 77 char-
ters.

Nesting depth of concatenation ex-
pression is too deep -

Null string is the result.

Name generator has exhausted all
possible names of the indicated type -

Generator recycles, i.e., starts
over again.

A parameter passed by value is the
left-handside of an assignment -

Returns a negative token code.
No assignment takes place.
No assignment takes place.

An invalid token occurs in a token
list -~

The syntactic structure of a token
list is invalid --

Returns the null string.

-47-

The pneumonics for the source of the errors are indicated below by
giving section and item numbers --

ADDTOK - 3.3.3 FUNCTION - 2.1.2
ASSIGN - 2.2.1 GENERATE - 3.2

ASSIGNI - 2.2.2 GETTOK - 3.3.2
COMMENT - 3.1.1 LABEL - 3.1.2 and 6
CONCATE - 2.3.6 LENGTH - 2.4.1
CTHERE - 3.4.1 PARSE - 3.3.1
DECLARE - 3.1.5 RPARSE - 3.3.4
EQUALS - 2.4.2 SELECTION - 2.3.5

ERROR - 3.1.3 VTHERE - 3.4.2
EXECUTE - 3.2.4 and 6 VTYPE - 3.4.3

The one pneumonic which cannot be described this way is EXPANSION which
is the action of substituting an A-statement fragment by its neutralized
counterpart.

-8~

C” BIGMAC ON THE C.U. CBC-7600

Using the BIGMAC system takes two steps. The first is to try to
compile a STREX macro file into a macro module. A macro module is a
multi-record file consisting of three object modules and one data re-
cord. These modules and data when combined with the rest of the BIG-
MAC expansion component, implement the macro process specified by the
STREX file. Applying this processor to some AINSI FORTRAN text file
constitutes the second step.

In terms of KRONOS control language the first step takes the
form -

GET (BIGCMP/PJ = PAIX,ID = A245) »
CALL (BIGCMP, RENAME/S = ?, M=2?)

The S parameter is the name of the STREX macro file and the M parameter
is the resulting macro module. This step requires 1258K and depending
on how heavily the string and macro features of STREX are used, compiles
code at a rate between 5 and 40 Tines/second.

The second step is carried out by the procedure BIGMAC which has

three parameters --
GET BIGMAC/PJ = PAIX,ID = A246)

CALL (BIGMAC, RENAME/M = 2, 1 =7, B = ?)

The M parameter must be the name of a macro module created by BIGCMP
above. The I parameter is the AINSI FORTRAM text to be expanded and the
B parameter is the result of the expansion. This step requires

1OO8K plus enough extra core to fit the object modules of the macro mod -
ule. The processing rate is 60 lines/second plus the time spent in the
macros themselves. |

-49-

The diagram below summarizes the steps --

Macro File

BIGCMP

Macro Module

I BIGMAC B

Text File Expanded File

-50-

D SAMPLE APPLICATIONS

/
Three examples will be given below. The computer printouts
for each example consist of three segments in the following order --

1: The macro file for the example.
2: The input text to be expanded by 1.
3: The BIGMAC Tisting of the expansion of 2 by 1.

The printout for the first example also contains the object code
(FORTRAN) for the macros in the macro file and the day file for the
job.

The first application illustrates the usage of the parser and en-
vironment primitives. An auxillary macro AINSI(INDEX) takes the expres-
sion INDEX and determines whether or not it is a Tegal AINSI subscript
expression. A function macro BNS(INDEX) replaces itself with a refer-
ence to the INDEXth element of an array B. BNS assigns the index to a
temporary variable if and only if AINSI(INDEX) is false.

00z 0L g9 (1'3aN'P) 41

002 0L 09 (2719 (007 (81 "TTJONI}IdALA) 41

00z 0L 0D (Z'1D' (907" (01

rt(oozicoztonz
‘oz'cl'ooztop'ooz ooz 002002002 Q0T 001!

(41'711°%'6d)¥0LL3D = p

LY o= o

00z'0014 002 (p-n) 41

(M1 317954)Iwa.139 = p

RV

002 OL 0D (i 3N'P) 41

0L DL DB Ly da) d1

(¥1'71°%W'5d)%0LL3D = p

o= M

coztoptoos (v-n) 41

.*mvang ldALA) 41

00e Ci (ranty 41

06 04 gc (proa-) 41

(M1 1 M Sguoilan = p

(OT'dIb=)"'Gd)0Lidn = 7

) Z¥ o= o

0G 0L 00 {H43N'D) mH
(I I % 6d)uoLLaD =

S x

og'cpios (1i=n) 41

(HI'11'M' 8d)yLidn = p

LY o= Y

0§ 0L 99 (praN‘'P) 41
08 OL 09 (134°03°n) 41

(¥1717°%'sd)n0LLao =P

, (S
‘ooztongtons +

Q0T 007z 08 008). 0L 0D

VE{HITTI W S MLLlED =T

. Y

(oM1)3S87d = &d

((A* 28D A) *%SA) " ($2°+)S((D D ASD A D) " %4

~= JOYNONYT ¥y 1Nno3d

SRVSRNETEOR 1

ML NI S ONTHLS

HS170d XI41S0d SLI ;H ATTNG ONY 41 LdIH05805 ISNIV T¥DIT ¥V S NOIS
~-SAUIXT NV CITEVINVA HIOIINI NV 36 A ONY LNVISNDO ¥3DIUINT ouzoﬁm
=N NY 38 O 137 NOINN FLONIA § OnNY NOILYNILVYONOD HZLONIQ ° L

207 1ya1007

MO1L3D 3dALA H3IODZUINT

SdfaNl wz4¢wm
ISHYd DNTYL

ﬂavangMq NOTLONN4 Jq;H:)

${$ ° ONI

(% * 5
aNT © 8=

0 CL 0D

'YIANI ISNIV V03T ¥ LON §1

N3
: unl3y
‘ &gmm

' mvmm = mzm
$ * 5 3LN03IX3
(1)H3NID = S
((ONIJISNIV) 41

X3ANT

o8

A

08

2% .

$24

og

0z

0l

ER

ot

3HL 441 319YIMYA AYYHOOWIL ¥ OL X3ONT IHL SNOISSY QUIVWN SIHL

(aNT)SNE

ISNIV VY21ID0T
SYONI ONTHLS

NOTLONNY ONIYHLS

OHOYW

COVVOLOU

COOL

‘aNg
N¥N13Y
"ISVY4 ® ISNIY 002
NdNL3Y
; ‘ANl = ISNIY 004
oomo%ooﬁm.ku.Amod.AmH..JHvonvma>P>umwom

anNz TOLOCO

. NY¥NL13Y 501000
(sNg TIY0 9L00CT
mwoMfmvmvxmf<x§_440 PLOOOO
({eov* 1) LLTINM) QNIOX =101 L5000
/(HL/e0vyLea L30000
(ONT)QTWOXWI YD GOU000
Ammoq&vaHHJKSA@ﬂzuxéquo G 150000
JIHL T aRL/ZovY L L9001
:ynkmm 4
. (SNE)43STIXWI YO SaH000
(00T ENE)YESYXNIIYD) mmoooo
(Lo el LT un sho}
co
co
((oov'E) 00
. co
ERG co
,u. Tolel
{(ov'L) I 5o
.I 00
PERINV Rt o0
({(2)3N KSSYUWTIVYD 800
G0 MIJISNIV AT [shelel
| 1Yo LLoo0e
1YY £00000
| WY o S00H00
i {zoo00! > YO £00000
o}
¥3ANI ISNIV 1vD37 ¥ LON I X34NI 2
IHL 441 ITEVINYA AUVHOAWIL ¥V 0L XIONI IHL SNDISSY OHOVW SIHL 0
2
£00000
£0000
{(t)eoy! 00000

100 30Yd “ ey /1v/8L Soiv L4 AON NOISHIA NNY

0)d3STRATIVD : 2ET000

.mm4<¢.ﬁHm7w< 002 LEZ 000
NHNL3Y LZZOCD
' {(0)dasIXwIIvo" 822000

iL*=1GNIVY 00} - PZZ000

00zoLoo(z 1o (no? LAYET 08 2L2000
“N)4I 98 \owuoo
Trie HOLL30=1 £€0ZC0
LEM=Y DL womoab
002001002 (p~n)4T 9L1CO0
(dI 119 8d)M0LLaD=D TLI000
LEMEY 09 GLI000
00z0Llon{(z 19 (9014 (¥1* 11! YL JER 351060
: coz 41 0% P& EOCO
: oL 41 COESL000
A¢M¢Jg =n 9y 1000
=¥ 0 pr 000
P41 g ioce
00zoLon(Z 1D (D07 (01! J41 0E1000
oomgpmmﬁw.mz‘Aqu LT L0000
onop:g,g WEREDE B S wZL000
(MI'TI'4'sd)MCLianen 0z 000
hg,ﬁ:f HUSdIMOLLED=sT ZLLe0s
Ten=d 08 0Li0noo
0G0L0D (L} 3N P)AT 901400
(HI°71'y ' sd)x0LLaDs=D : T0L000
LEY=Y 0T S 001000
0gloplos(ti-nldl SLOOCO
(81991 sdIMnLL3n=p 1L0000
L oLEuEy 040000
QG0LCO P NPT 99000¢C
0E0LOD b .;.kaq 780000
(MI‘T1'4° 64001139 0oLo0e
: w+x-x or - 9E0000
ptloozigoz'o oa.oom*oo*
Z'00z'0Z' 01 00z 0p' 0024002 002 00z 002" 002'004°002°002 06008 Fuo §2o0o0
(Y1 T % 84 vvohkh 00000
210000
({an7)zZsy S LEO00S
a 15 200000
NS TTXTTTY D 500000
(10 SSIXKTTYD £00000
o}
(AT D82 A) *SA) (30) S ((D2 NSO A D) T ole! 3
: ¢
- 51 ONISLS o
HST0d YXI4150¢ SiT 47 ATIND ONY ¥ S1 NDI 2
~SaH8dX3 NV CETEVINYA HIDILNI . Jok LNT QINDIS 2
<Nl NY 38 2 137 *NOINM 2L10NMI \ SRR 10 HION3IQ Co13T1 0
0
0011y 1001 £000600
WOLLAD S ALAYIDILINT £0000C
Sd 'ONTHIADILINT £0060
ISUYSYIDTINT £00000
(ONIJISNIVNOILONNATYDIDDT

100 20Yd : "EL/LV/BL S0iv) LL ADN NOISYIA NMY

ONZ 8EZOCO
NiUnizd PETON0O

Z00 30vd . o e/ V/84 G0ty LL AON NDOISHIA NOY

1HN1FY
(Z~1x8) = Y
{Ixg-T) = Y
(¢ +.1) = ¥
(¥*y) = Y
{1+¢) = ¥
(g+v) = Y
()¢ = Y
(Prg=)t = Y
(r+1) = Y

(111)8 ¥ID3INT
AW aNILNDHENS

3w

153~
I T T S S e S e i i e T

vy
m

—

Ly

3 o
[£3ee n 5 Eaun BN ES v R 0) Biun I8 0

—

Y

o3
ZWnE WG ZWnZ 0N

£ e 0%~ (01 e [0

and
N¥NL3Y

{z-1x8)8=4
(£01)g=H%
1%£-2=601
{(e+1)8=y
(zol)a=X
Vab=z01
(1+€)8=M
(ro1)g=¥4
=101
(p)a=H
(o01)a=¥
P#E==0071
(o1)g=y
P+1=01

(}11)BYIDILINT
AWWNOINI LAOYWENS

& . - SNOISNVdX3

5 0 ¢ ; - 6 SIvVi0oL

R kbt bbbt Fo b

g 0 0 : - & SNE
SINAWILVLS FTEYLIN03XT SINIAWDD S40d¥3 SNOLLVYALLDV [82-Jop]

AWANG 40 ANYIWANS #k%

SNOILYAILOV ON

403 40 AYYRINNG ok

5 - SNOISNVAEX3

0 Y - : 8 §Iv.i0L

]

ok b+ bt okt R _

g 0 0 - 6 $Ng
SINIWILVLIS 3TEYLIN03X3 SINIWNWOD SHoEHd SNOILYAILOY 0dOYW

AHYRWAS TYNIL wxx

89y

o
-

o

2]
o

o
<

©

<

P

$

%

$

CIHINOIY VL0 .mm.ve.ww
(880=8'43ALNQ totzotwl
(gg ipBSTEL
a3y TNGIY YLD “lptegrel
(a8y=g"'0X3.loy opesiel
"ELAT pgregret
(¥ lz'esrel
(¥ANT [XvRR=I=RE AN
53714 FHILNJ or AN -1=R 0]
T ¢ >Huo,,;h¢m>1ou.cw.mm.uw
$37I4 O gauaL 1037027066
HIATHA OO0V huk“x> a;.ow.mm.mf
SITT4 © azu3 0z'9g- ¢l
CHAALUC YIALY .mr.@m.mr
53714 0 CERE] ‘617988
CAndLInEtIsNiy ‘BLresTel
{1¢ T8GR
LR '8L'8GTE)
"8Ltes ey
poize zjm 0L 14 00z9}!L ‘0098 gl
(Ldde'e §Qm> LO0dOVYRH aYnan ! an4< 0=07)0D LS EE)
(g1 =917) L3507 LG SE L
Anmomau QY07 PETEE S
et RN
. (1 ‘ELUEY
SRS SoalEd R=1=RN
Dt O0dOYI ! 5 £regTel
={-AE
APZY=0T'XIVd="d/EINTHA YIATHA JWASAS) LaD 0e 88 ¢
COpEY =gl XIVd=Nd/PEOCWD LED 88 G ¢
,mxwf,awquqasv&\)gaoq> L3I0 pE Gee
(ISNIVH=W TSNIV=S)IWYNIY ' dWNI0Ig) TIv0 28 8e ¢l
CdW0DIBt LaADLETes gl
CISNIVYLEDU0ESSTE)
XiIvd'idIP0HEd 8L 68 €L
ER qg YA >Jm;ow>kmu Md/Q100 *6L°88'¢}
H=04'0L4=T7L 000G b =WD 8p2Y 6L 88 £
‘g0h QILIINENS 618G EL
6 = L2 SONOMY SIND "S4/14/84 ‘nooavey
zZe'62 3 JONVIVE 1NNDIDY
16tz 3 AYQ H3d 3LVH NOILYINWND2Y dd
1503 viol
800 $ $29vd 0} a7
SIVINILYMN 0/1
BL°C $ SINIT 08T di
ONISSI00NYEd 0/
9ot % oa LLS DOYSH
120 3 NEd 9¢e . NHdSH
3DVH0LS SSYi
61°2 kS SYH-OM 1EC WO
AONYdNO20 ANOWIW
90 g 03sS. 2B dd
EE'C 3 535 £ 40
ONISSAT0Yd
zZo 90yl /L1/8L 9vTv/X1I¥d N009bEY LSOO 80N

i el

99" $ *ON3EOPTSC o0l
) AV 10

4045

0038b0Q} NAY GL T4 00944 avol oL 14
(ISNIYW' g8 ISNIYI 0=0717)180

ﬂamomxwvoqo

mo

g=g ' ISNIVWN=W' ISNIVYI=T)anyNIY ' ovnIg
.Hmzuqm,oz

O

§3714
cind

QIONIRIY ZEE

A ARSIREL
Q GI¥ILNNCONT 103
7H<Em<wu<2memr&Oo
0
v

Q3¥ILNNOONT 103
PISNIVW I 48 P48 Ad00

17 M0V
JANTIMIY

SITIS | 31374000 AdDD"
T ea0t 487 44 A400 "

*17' 880G 45 48 AdDD "

S3ITI4 b JP&JQFDU AdOO
.AJ.}QI. s b Lm>l}.U
Amu ONIMEY

a341nd3y 4<HUD 03 £€0

(880=8"'0VNPE0=1)NNY "

“gg -

ey

g.mn

9z
‘sz
ez
B
bz
bz
‘gt
e
ez
"z
ez

.wm.
1z

1

“yze

6l

60
50

=foN

£6C

e

ste
60

30
“go
G0
‘G0
=t
‘50
st
TGQ
S0
G0
G0
ety
=3¢}
‘gt

vl
vl

e

=

<t <¢ <t
-

< SEoSEosF o«
Ll il e S

<

4

At

VI A

‘i
i
i
A

orvt

s
2
A
i
s
A
A
Bl
A

nmmovmzHBMm.mm.«o‘@w

-5]-

The second example is a simple implementation of the procedures
POP and PUSH. Fach macro requires a large number of parameters. The
user must be intimately connected with the code produced by the macros
in order to use them correctly.

anN3
N¥NLaY

WILT * $=($ * X3ICGNIS " $)$ ° MOViS 3LN23x3

MI4¥A0 © $0L0D($ °© ONIT * $°1D°¢ - XIANIS * $)4I$ ILND3IX3
$1+% * XIANIS * $=% ° XIANIS 3ILNO3X3

. TAOY LS
JHL 40 3ZIS 3IHL ¥0d4 NOISS3¥dX3 NY 2d 1SN -DNIT- aGNY §31NIO0d
dOLl MOVYLS FIHL 38 LSNW -X3ANIS- “ISIMMIHLIO MOVIS IHL OIND -W311i-

W3LT H3IDIUINI 3HL SIHSNd HOIHM Lng *SMOTH4HZA0 —-AOVLIS- OVLIS 3IHL
41 —-MT4¥A0~ 738Y7T 3HL OL SIHONVHE HOIHM 3000 SILVYINID O¥IVYW SIHL

MTAYAQ ONIT WI LI XIANIS ' HMOIVLIS DNTINLS
(MTJHA0 ONIT WS LI XIONIS HOVLISIHSNd INILNOHENS
OYOYW

aN3
- . NEnL3Y
$1-$ ° X3IANIS * $=% ° XIAGNIS 3LN23X3

$($ * YIANIS ° $)% °° MIVIS ° $=% ° d0d ILNO3X3I
MT4ONN * $010D(0°371°$ © X3ANIS * $)141% 31N03AxX3
(1)Y3NID = d0d

) *YILINIOd dOL MOV¥LS 3IHL 38 LSAW -X3IONIS~ "35IM
-43IHLIO MOVLS 3HL SdOd HOIHM LNY ‘SMOT4U3ANN -MOVYiIS~ MOVIS 3IHL
41 -MT4ANN- 138Y7T IHL Ol SIHONvHE HIIHM 3300 S31vHINID OQHOVW SIHL

MI4aNN X3IANIS ‘HMOVLS ONIYLS
(MTAAONN XZANIS MOV LS)d0d NOILONND ONIULS
YOV

LDOOLOOLOOLOLO

(GRS

[GSRERGRS RS

N¥Ni3Y

0T 0L 09

(0E'N3T (011 L)d0d* 21 '2)HSNE 1vD

T 0+ 0L 0D
(0€‘N31*(02°a1'9)d0d+(0E*YI'V)dOd ' LI L)HSNd T1vD
0 = 11

0 = 01

LI'(N3T)1 ¥3IDIINI
JI*(N3IT)D ¥3DIINI
81'(N31)8 Y3IDIINI
YI1'(NIT)VY HIDILNI

N31 ¥393UNI
(0IgI'VYI‘D'a ‘Y N3TICAYALS INILNOYENS

ce

oc

ot

(sans)

HSNd

d0d

(sgns)

HSNd

d0d

d0d

: N3
NEN13Y

101={(21)2
0SOL0D(N3T 1D D141
1+01=01

L-11=41

(11)L=101
0c0109(0° 37 41041

00I+01=(11)1
0C0L0D(NIT 1D LT)41
LrLI=11

1-g1=91

(a41)9=001
0zoLoo(e 31 g1) 41
L-vI=v1

(vi)v=01
020109(0°371°v1)41

LIY (N3 LEIDIINT
21°{N37)0H39D3INI
g1 (N31)6483DTINI
YI‘(N3T)YHE3IDIINT

NITHIDILINT
(01'91'vi‘0°g Y NIT)CQAYNLSINILADYENS

0¢

ol

(8]

(9]

Sl 0 0 - 5] SIVIOL

bttt +d bt bt bbbt

9 0 0 - 4 HSNd

6 o] o] = € d0d
SINIWILYLS I18GVYLNO3IX3 - SLINIWACD SHguy3 . SNOTLVATLDVY OOV

QaYNLs 4O AdVWNS xxw

SNOILVATLOY ON

403 40 AYVARNS kkx

9 - SNOISNVYdX3

= 0 0 -] SIvi0l

+tt bttt bt O

9 0 0 - 4 HSNd

6 0 0 - € d0d
SINIWILVLS 3718VLND3X3T SINIWNCD . wmoamm SNOTLIVAILOVY OHOVIN

AHYHWNS TYNTS %k

-52-

The final example is an extension of the second and demonstrates
the power of BIGMAC in implementing data abstractions. The data abstrac-
tion stack is supported with the macros -

1. SUBROUTINE DECLAR (<type>, <name>, <length>)
<name> is a variable name.
<type> is a key word for one of the five standard types.
<length> is an integer constant or parameter.

DECLAR declares <name> to be a stack of size <length> and
type <type>.

2. SUBROUTINE START (<name>)

START dinitializes the top of the stack <name> to the first
element of the stack.

3. SUBROUTINE PUSH (<name>, <expression>, <label>)

<ekpkessfon> is an expressipn.

<label> is a statement Tabel.

PUSH pushes the expression <expression> onto the top of the
stack <name> unless there is an overflow in which case
control passes to the statement labelled <label >.

4. FUNCTION POP (<name>, <label>)

POP pops the top of the stack <name> unless the stack under-
flows in which case control passes to <label>. The
type of the result of the POP is the type given to
the stack in its DECLARation.

The required macros are much more complex than the macros of the second
example, but much power has been gained. First, stacks of any type are
supported; The implementation of POP in the second example constrains
stacks to be of INTEGER type. Secondly, less parameters are needed for
each invocation of POP and PUSH and the implementation of the abstrac-
tion need not be understood by the user. Finally, a fixed amount of
storage is needed for temporaries in the code generated by POP. This
is not true of the second example. The one drawback is that at most

~-53-

eight POPs of a given type may occur in a single statement. (See the
example of the routine MISTAK.) However, this Timit will rarely be ex-
ceeded in practice.

Arbitrarily complex data abstractions may be implemented by
BIGMAC. The Timiting factor is the coding effort.

*C3NNYOS 24

#iso*

40 MOVLIS ON ONV
N338 3AVH SMOVLS ON

N3

NYNL3Y

538N0Y 11YD

*ISTVA T ENIVANT

0L LnOgy ST 3INILNOY NIVW IHL NIHM 135 ST NIVWNI
WIS 'SdAL'GNIL ¥3IDIINI
SHLd SNIT ' SHWYN'GALL ¥YAL DNIYLS

ONIL*NIVINT ‘¥d43030 ¥01907
0L)SHAL (0L)SuLd {(0L)ISNIT (0} 1SKYN 4
‘(S)ONIL'(S)dAL:i (S)ONLIL (8 'GIuvYAL }
CNIVIANT " MUED30 /10dU1S/ NOWADD
DIGNVI INILOCYENS
0YOVH
ang
N¥N13Y
"3SIVA = (I)ONT L Ci
S*i=1 0L Q30
*357vd T =4UuI03d
0=%150
TQIUYINAC NITG SVYH 3dAL ANV

‘gIYUNDO0 FAYH SHOMHI NOLIvVEYIOIA ON .mu¢<Juma
("N d)YLINN WYHSOHd AY3AT 40 ONINNIDIG 3IHL 1V

Wi u_qa>p GNTL ¥3931IM3
mmpa.mZMJ,qu dALL'YVAL ONTYILS
ONTL'NLY mgh ¥Y¥3I0IQ IYOID0T
MISD ' (0L)SdAL (01)sdLd (0OL)SNIT (01) SMy z

*3SN ¥04 dn St
LON ST 2NILINOY NIVA 3FHL ATIVILINI

H1SO*

‘Amwquh.nmva>Ph,Amvath.Am m_a<>k
CNIVIWNT ' H83030 /10d9LS/ NC
D3IAN0Y INILINC

3HEnNs
QUOVIN

an3
N¥N13d
$XITdW00%$=(8)dALL
$NOISIDIHAITIEN0As= () dALL
$IY010018=(€)dALL
E1YIUS=(Z)dALL
THIDIINIE=(L)dALL
CINYLENTVIENT

p=(1)ANTL ot
g'i=1.0% 02

AYIAT 40 AMVHOdWIL L1S¥I4 3HL ONV CQINNVOS ONIZ®
“dALL ¥OLO3A 3HL 3ZITVILINI

3dAL

M1S0" ma>P_ozHH YADIUINT
mm»a SN3T'SHYN ¢>pk.a<>» ONTHLS
ONIL'NI aqu ¥y¥3030 1YI1907
(01)SdALl (o1)sdtg* (0L)ISNIT (01)Swy z
C(GYONTL'{g)dgALL” AmvozHH (g* mv A |
NIVIANT ‘¥u3 c¢

239SAS wzmwﬁﬁmmnm
HoYN

(R] (SRS RS

(GRS RS RS RS

(SRS

LOOO

0 0L 09 (((g - 0)(1)dALL (G 0)3dALIYLSOT) 41
g'i=1 02 0Q
12 0l 09 (v L7 (3dAL)YLSNIT) 41

"YIODILINI ST LT JWNSSY ONV y0ud3
NY 3NSSI NIHL 37gVI4TINIAI L1ON 41 "MOVLS 3HL 40 IdAL 3IHL AJTLINIAI

L+M1SD=M15D ¢!
INNILNGD L
NNl 3y
$°¢ ° MIOVLIS 3 -~ NOILV3IYD ILVOITdNas ¥ouu3
11 0L 09 (((I)SWYN‘MIVLIS)IHiISOI"LION") 41
M1SD*1=1 1L 0aQ
ZL 0l 02 (0°03°%1S0) 41 0}

- ‘ *3000 H3IDILNTI FNEVIIVAY
IX3N IHL LT NDISSY ONY JNOINN SI IWYN MOVLIS 3IHL LVHL YMO3HO

NuNLIY

INYL* = ¥Y3I0N3Q

S SHIVLIS ANYIN 0OL$ ¥Ou¥3
0t OL 09 (0L L7°M1SD) 41
R NENL13Y (¥¥303Q) 41

TNYNL3Y 3HL "N°d INIYENS JHL NI
Q3¥VYI030 N33E IAVH SMOVYLS O NVYHL 3¥0W 0 ¥0d¥E3 NOILvavio3d Vv 41

1ST1QYLSTID LA NITUMOVLIS IdAL ONIYLS

WISO'SHAL ANIL ¥IDIINI

SYLJ*SNIT ' SHYN'dALL'HYVYAL ONIYLS

ONIL*NIVINT *¥4¥3030 1V01901
WIS (01)SdAL (01)sdLd (0L)SNIT (01)8! z
C(S)ONTL (S)dALL' (S)ANTL (B GIuVAL !
NIVIWNT *Y¥303a /710dM1S/ NORWOD

(NIT*MOVLIS* 3IdAL)EYI0AC INLLNOYENS

; OOV

an3
N¥n L3y
INNTLNDD ot
s - (I)dALL 3I¥v1D3Q
(8) ° S * $/% * (v 0)(I)dALL * $MLIS/NCRWODS IHVI03IC
(d)YH3NFD = §
0L 0L 62 ((1)oNIL) 41
g'1=1 0} ©Q
*INYL T =NIYANT
MENLAY (NIVIAND) 21

TANTLINDY NIVA 3HL NI
Q3ANTONI L13A LON S3dAL ISOHL 40 SNOWWOD AYYHOdWIL 3IHL 3Y¥VI23C
ONY NIWYNI 13534 N3IHL O3NNVY3S N3I3g LSNP SYH 3INILINOY NIVA 3HL 41

S HNIYLS

MISO'SHAL'ANTL ¥IDIINI

SHLId'SNIT SHWYN ' dALL ' YYAL ONTHLS

. ONIL*NIVANT “¥¥3030 Tvo1907
WISO' (01)SdAL (0L)SdLld (OL)SNIT (0L JSIHYN [4
C(G)ONTL' (G)dALL (8)ANTL (8*GIHYAL L
NIVWNI *¥83030 /10dULS/ NOWWDD

ON3DY¥d INILNOYENS

04OV

OO0

[CRS RS RG]

(SRS} QOOLO

GRS RSRS RS/

S'MIJUAC WILT 'HMOVLIS DNIYLS

MLISO'SAAL‘ONTL ¥IDIUINI

SYLIA'SNIT SHWYN dALL YYAL ONIYLS

ONIL MIVWNT*¥¥303C¢ TvDID00
WLISO ' (0L)SHAL (0L)SHLd (OL)ISNIT (0L)SHYN z
(G)ONIL'(G)dALL (S)ONTIL (8'glyvAl 1
CNIVIANI *¥E3030 /10dM1S/ NOWWOD

(MT4YA0 NILT “MOVYLISIHSNE 3INTLNOYENS

OYOVW

and
NY¥N13Y

$i=% © (I)S¥ld ILND3X3

NanLay (o-03a1) 41

. (MOVLIS)IHDIHM = 1

TINIW3TI MOVIS L1s¥ld
JHL Ol 401 MOVIS 3IHL SIZITVILINI HOIHM 3000 Z1VHINID OU3dZ-NON 41
ANV =MOV1S-~ 3JWVN 3HL HLIM MOVIS 2HL ¥C4 3000 d3O03UINI 3HL INIWYI L3

HOIHM ¥393INT
WOVLIS ONINLS
MLISD'SHAL'ANTIL ¥IDIUINI
SULd'SNIT SN dALL ' HYAL DNINLS
1883030 YO ID0N
MISO (OL)SHAL (0 1)SHId (OL)SNIT (0L)swyN z
C(G)ONTL' (G)dALL (G)ONTL (8'gluvnl
CNIVIANT ‘383230 /10d%LS/ NOWWoD
(MOVLS)1¥YLS INILNOHENS
OYOYW

ana
NY¥NL3Y
S((1)$ * MOVLIS * $°$ ° (¥1SD)S¥ld -~ $13ONITVAINOIS 3¥Y1034Q
T=(MLSD)ISdAL
(I)Y¥3IN3D=(AU1SD)ISHLd
NIT=(#1SD)SN3T
MOV LS=(MLSD)SHYN
$($ * N3IT * $)% ° MIVLIS © (T)dALll 3IHV1I03Q OF

*SOILSIY3ILOVYYHOD INVAZT3Y SLI NIVLIIY GNY MOVLS 3HML 3¥VI0Z2d

((LSTQYMLSNIT "0)LSTC 3Y¥YI023Q

((L1STD)HLSNIT *0)LSTD 3YVYT103a
$'$ ° L 1570=1S710 L€
$'% Lt 1570=1%714

1={1'1)dvYAL
(¥)43INID=]
- g‘i=1 1€ 0Q
$/¢ ¢ (P 0){1)dALL © $HLS/NOWWOD$=1512
(1)dALLl=1S7G
INYL =) ONIL
Or 0L 09 ((7)ONIL} 41 o¢

e

0S 00 N3IHL "N d LN33dN0 WL NI G3ANTONI
NIIg L3IA LON SYH MOVLIS IHL 40 3FdAl "IHL 404 WNOWWOD Advy0d4Wil 3IHL J1

1=1
$°% ° FdAL * ¢$ ~ 3dAL TYHIATTIE YouH3d 1e
INNTLINDD 0¢

oo

(GRS RO RS RS)

(S RGNS

(GRS RENS

*Q3NssSI SI SUVSSIN &Ommu NY N3IHL
HO¥¥3 NOILVYYIO3Q ON 0OSTv ST 3daHl dI .sz A*a SI 0 ‘iSiX3 LON

it

$30C 11 41 " -MOViS~ G3WYN MOVIS 3HL 40 3Q0 ATIAINI 3HL ENIWM313d

HOVLS ONIMLS
meo,ma>k.ozH» HIOTANI

S¥ld'SnNIT! ‘dALL‘HVYAL ONIMLS

INIL*NI LH ¥¥3I03A VI 1901
HISD (0L)SHAL (0L)SULd (OL)ISNIT (01 ISWYN z
C{G)ONTL (GldALL (S)ONTIL (8 alyvAl |

NTUWNT Y2230 /10dULS/ z_azau
(MOVLS)IHDIHM NOILONNY ¥3DIUN

aN3
NYnNLIH
$ ° S %$=% * S5 FIND3IX3
vl $ * d0d 3ILNS3IH3
‘$ TS T $) 41% 3in03X3
(1) S
3031y 41
+0=(TIONTL
T)UYAL=d0d
(1)YuN1i=p
(r)sdAaL=1
NYNL3Y (00317 41
(ADYLS)HDIHM =

) L
$(% © S ° %)% M
MI4ANN C $0L09(1 03

d=

e A m)

*IONZUIA3E NOTLONNS IHL ¥0d4 A3LINLTILSENS ST IwvN AUVHO

3HL TSdNDO0 MOTF¥3ANN NV 41 -MI5aN0- G37739vT LN
IHL Ol SIHONVYE HOIHM INg '3dAL 31vVIddCucdy JHi 40 >mqt@w5
FTEYTIVAVY LIX3IN IHL OINI YMOVLIS 3HL 40 d0L 3HL Sd0d HOIHM MLOL

JLYHY3INID NIHL OY3Z-NON 41 OGNV -MOV1IS— d04 IGO0 ¥3DIINI IHL 3INIWE3L3Q

HOTHM ¥3931

m,zdmcz:.xu<hm ONTHLS

LSO 'SHAL'ANTL ¥YIDIINI

SHLd'SNIT'SUUN dALL ' HYAL DNIHLS

ONILYNIVKNT ' '5H¥43030 1v¥DID0T
WLISO(0L)SAAL (0L)SHLI4 ' (OL)SNIT (0}) SN
P(G)ONIL (g)dALL* (S)aONIL (8 'GidVAL
CNIVANT P ¥EE0230 /10dMLS/ NOL

(MT4ANN WOV LS 1 d0d NOTLONNG DNINLS

O¥OVYN

and

. NY¥NL3Y

WILI “ ¢=($ * S ° $)$ ° MOVLIS 3IND3IX3

MI4¥A0 ° $0L0D($ ° (I)SK3IT. . $°19°% ° S * $)41% 3LNI3X3
$i+¢ S * $=% S JLNDIXI

(1)s41d=5S

N¥NL3Y (0703 1) 41

(MOVLIS)HOIHM = I

. . TSY¥Na20
MOT1453A0 NY 41 —MT38A0- 037736V INIWILVLIS FHL Ol SIHINVEE
HOIHM LNg MOVLS 3HL 30 d0L 3HL OINO -W31I- SHSNd HOIHM 3300

JLVHINID O¥3Z-NON 41 ONY -MOVLIS- ¥C4 3000 ¥3DIUINI 3IHL INIWg3IL3d

HOTHM d393INI

(SRGREGRS

(GRS

DOOOOOQ

QLUOOLLOO

aN3
NY¥N1ZY
1 = #DIHM
M¥N13Y
0 = HOIHM
$°QILYIYD LION = $ * WOVLS ° ¢ -~ MOVISS d0uy3
CL 01 09 (Yu3030Q) 41
. : INNTLNDD
0 0L 02 (({I)SWYN'HOVLIS)YLSOI) 41
W1S2'1i=1 01 0Q
LL 0L 09 (0 03°¥Lls2) 41

oe

(43
[

0i

(o

GN3
Ny¥nl13yd

. L0 W) d0d (0L ‘W) d0g+ (0L 1) dOd+ (0L ‘) d0d
+(0L'W)dOd+{0L ' W)JOd+(0L W) dOd+ {0 'W)dOd+ (0L W) dCd 'W)HSNG 17vD

{01 (01 D) dBd ' W)IHSNd 171VD

10¢)¥YI03a 11vD
Q)Yy¥vy103Q 11vD
34)¥v¥1030 171v0
R
]
i1

-
-
>

—

1YY1230 119D
)¥¥1230 1190
YEYI03Q 11v0
(1) VYI03G 11v0
507)¥v1030 11D
0aiX¥y133Ia v
WOOYMYTID3C 1TVD
{(DYLNYIS 17VD
(Op 'V '¥IDIINIIYYIIQ 11vD
(0Z*¥'NY37008)4Y1034d 171Y0
(0E' V' 'd3IDILINTINYIDIA 11V
MYLSIW 3INILNOHENS

N3
NYN13d

[e I
oy - -

O o O/\A/"’\‘

0z 0L 09
(0g'(0€'1)d0d*0)IHSNd 11VD

0L OL 09
(0E‘{(0E2'8)d0d+(02'¥)d0d"* L)HSNd 11vD

(1) L¥v1IS 13vD
() L¥91S 171vD

(N3T'L'4393LINT)NEYID3C 17VD
(N3T*0'¥3D3IINTIHYVYIOIT 17VD

(N3T'9°7vY34)8v1030 17v0
(NI VY Y3DILINIIEYISIA T1V0

N37T 4393INI
(2'8'v*N3ITIAAYMLS INILNOYENS
CN3

d01S

08 0L 09

(L1%1) Lvwdod
N o(00L'9) JLIHM
(ov*'2)d0od=r

(0'8*'v*'0E)AQYRLS 17VD

(0Z*'(Z+%1)1¥0T4'g)HSNd 11v¥D
(0Z'I1'Y)HSNd 11V¥D
oe't=1 0L ©Q

(g)1¥vis 17vD
(v)18v1is 171v0

(o€ 2 ¥3DILNTIIYYIDAC 17VD
(0£8* Y34)4vI23Q 17V
(o' Y ¥IDILINIIY¥YIOIQ 1IVD

.

Gl

0¢

cl

o

001l
o€
0c

ot

©

(]

(sgns) +
93ESAS + , -

- L C- SNOISNYJdX3

o 0 0 - \ Tvi0L
Sttt R FRT R
0 0 0 - } DIESAS
SINIWILYLS IN8YINDIX3T SINIWWOD SHOUUSF SNOTLVYAILDY OHOYW

408 40 AYVHHWNS xx*

(sgans)
aN3DYud

(sans)

d0d

{sgns)

HSNd
(sans)

HSNd

(sans)
L¥vis
(sgns)
LHYLS

(sans)
d4v103a
(sans)
¥y1034a
(sans)
dv1o3a
(sgans)
DISNY I

+ o+

RO R S S

<T M)

O

[G & ol
wLooiwda
el D e O

(2'g'Y*'0E)ACYYLSTIVD

ANNT LNOD
(C*x1)1v014=(001)4d
0Z0L09(0e 1D 001)41
14001=001

I={01)Y
020109 (0 19 01041
1+01=01
octt=I1000100

$9%%5%%

HOYX31dWa0
(8YHOY/IWDOMLS/NOWIKDD
DOYNOISIDENdI I8N0
(8)D0Y/NOONLS/NOVIIDD
40Y71y0 1903
(8)30Y/201HLS/ MO 0
((L)2'101)30ONZIVAINDT
(CE30H3DIUINT
((L)8'00I)32ONIIVALINGS

(oe)a1vay

oY qgov ooy goY voy ' B0Y 8OV LoVIVIY
30V QOY* D0y 'a0Y VYOV 60V 8OV LOV/VINNLIS/N
. ((Hyvior)zonalvaindl

(0)YHYIDITLINT

90vY‘Sov POV EOV oy 1OV QOV OVUADTINT

90V GOV ' pOV EOV ' COV 1OV 00V OV/ LNIMNLS,/ NCINHDD
3$35%%

0001

9l - SNOI1YY¥VY103d

ol - SNOISNVdX3
L 0 0 - ot S1v1i0L
R tbt bt At bt
4 0 0 - z 1¥V1S
9 0 o - - 14 HSNd
0 0 0 - 3 GN3IDHd
€ ¢ 0 - t dCd
0 0 0 - b DIENVIN
o] 0 0 - € ¥V1030
SINIWILYLIS 3T78YLINnD3X3 SLINIWWQD SHOUY3 . SNOILVAILIOVY CUOVN

NIV 20 AYVHHNS ***

(sgns)
aN3Ddd

(sans)

HSNd

d0d

(sans)

HsNd

40d

d0d

(sgns)
1dv1S
(sdns)
LHYLS

(s4gns)
¥v1030a
(sans)
dv103a
(sans)
4v103a
(sens)
¥v103d
(sgns)
93800y

+

+ + + +

RE I T S S

aNz
N¥NL3Y 0€

0z0109

LoV=(101)D

0E0L0D(NIT 1D 10141

L+301=101

1~Z01=Z01

(¢o1)l=10Y
0E0L0D(1°371°201) 41 0T

L-001=00T
(0o1)8=L0Y
0zZ0LO9 (1 31°001) 41
L-01=01

(01)v=00V
0z0Lo9 (1L 21°61) 41

NITHIOILINI
555549
YAINOT

30V A0V O0Y 80V YOV GOY 80V LOV/¥IUNLS /NI
(L)Y 01)30HITVYALNDS

(N3TI¥HIADTIINT

GOV GOV ' yOV EOY ' ZOoV OV 00y OVHINAINT

QoY SOV POV E0Y 2oy LoV 00V OY/ LNINLS/NOWKGD
$$$%3

(0'g* VY NIT)OUYMLSINI LNOYENS

A
L%

1
>

[

4 - SNOILlvyvi023Q

ot - SNOISNY X3
L} Q 0 - el S1vi0L
e R S S e B
Z G ¢ ~ Z idvls
0 G [V - 3 DHEN0Y
9 0 0 - Z HSNd
0 0 0 . t GNIB¥4G
(9] O o - £ d0d
0 0 0 - b4 y¥103a
SINIWILYLS 3T8vINd3IX3 SINIWWOD TR¥CHE3 SNOILVYATILOY Qu v

QGYHLS 40 AYVWHNS *wx

¥v103a
(sgns)
¥v123a
(sans)
¥v103a
(sans)
¥v103a
(sans)
¥Y1034d
(s8ns)

R 2 I e I S

*Q3LV3YD ION - 2 -~ MOVIS
1¥vis + . w (YISN I YOUYTH*

(8ANS) + e

'Y ~ NOILVIHO 31v011d4nQ
¥vy103Q + #x (8ISN)H0UE Tk %

(sans) + e

“NY3IT00H -~ 3dALl TVDITTI

¥v103a ok (MISN)H0UETwx

+

(s8ns)
¥¥103a
(sdans)
938n0Y

o+ o+t

%
((1)N'8OIYIONITIVAINDT
(1)NNCISIOZH237an0G
(! moH,Jusz{ VIND3
(1L)ivax
Aﬁwvm.onvmuszq>H3am
1)S1Y3E
omoq,oﬁo<,ooo<.No<.>o<.xo< ;o<.>o<J< 1o
0ZOV'0LOV‘000Y‘ZOY AOV X0V 'MOY >oz\<“fx~n>:
((1)0'G01)3DNTIVAL
. mwkjvuuw
((L)d'p0oI1)30N3 H:ow
Avvarwsmsz
((1)0'e01)3oNaTYAINDS
(1)0vo 1907
NovY* 1oV SOV 30V 00V doy 00V NOVIYOIODT
Nov' L0V SOV 80y 00V d0Y 00V NOV/DOTIMLS/ NOWNDD
((LIN'EOTI3ONITVALNDS
(LINNDTISIODYdIT8nca
zoq,Joq,xoq.aoq,4oq.xo<.oo<.mo<y HnMu~u@L 00
WOV I0V MOV POY IOV HOY DOV d0V/N
(Cw! ,oHVw

(B
Lo
&
&3

¢
-~

Jovigov*oov a0y vovieoygov!

mo<.ac<.ooq.mo<,qoq,@o<.me<.ho<\zmuxym\zc:\uu
(Y COII3oNTTIVALNDS

(CTIUE3DILNT

(CLV'0TI)30N3TIVALINDS

- (0S)ivy¥Ing NI
doq,moq,woq.mo<.:o< LoV 00y ‘OVvdIDIINT

90V GOV YOV EOY COY " LoV 0OV OY/LNINLE/ zr_@ou
553

MYLSIWINILN oxm:q

{sans) + an3
aN3Dud + e

NYNL3Y Ot
(SENS)Y + e
LOV+30V+Q0VY+ICV+HOV+YOY+60V+B0V+LOVY=(101)]
010L09(1 19 101)41
HSNd + L1+10T=101
b~-101=401
(1oI)w=L0¥
d0d + 0L0L0D(1371 101) 41
L=101=101
{(tol)w=30%
d40d + 010109(1L 31 101) 41
: b—-101=101
. . {(1o01)w=0ov
d0d + 040409 (7371101 41
L—-101=101
{101)W=00Y
d0d + otoloo(t3n-i01) 41
L~-101=101
(tol)m=80Y
d0d + 0loLon (1 3717 101) 41
L~-101=101
(10T m=voyY
d0od + , ololoon(iL 31 101) 41
L-101=101
(101}l=60Y
d0d + ololon(i 3 i01) 41
J-101=101
{(101)m=80v
d0d + oloLOD(1L 317 101) 41
1—-101=101
(Lolin=L0Y
d0d + 010109t 31 1e1) 41
sgns) + ——————
A : #xFxx={ 1 0L W
01010901 1D 101341
HSNd + L+10I=101
d0d + ——————
(sgns) + ——————
*SYOVYLS ANV D01
4v103Q + wok (UISO)UOUUT %
(sens) + —————
dv103a + e ————
(sans) + e
¥vy1o3a + e e
(sans) + e -~
BY03Q + e -
(sgns) + e -
‘¥~ NOTLVIHO Jivolldng
dy10234 + #x (HISN) HOHY T %

(sens) + e

€e
bt

[eBoNeNs R Ro]
o

SINIW3ILVLIS 378vY1IN03X3

R

OO0 CO

S ANIWNOD

oe - SNOILIVYYI03d

AVLISIW 40

g1 - SNOISNYGX3
G - 8¢z SIVLIOL
B 4t
[- - - L L¥YLS
0 - 1 53Ian0Y
0 - z HSNd
) - ! an3oyd
0 - 0l d0d
% - €l dY¥I030
SHOUYT SNOILVYAILDY QUOYI

AUVANG ##0k

SNOTLIYATLOV ON

403 40 AYYWANS =+

19
bbbt
¢

4

0

81

¢

6¢

0

0

SINIWILVYLIS F1EVINOIX3

+ O

bbb

SO OO OO

SANZWNGD

ottt

S

TOOO0OO OO + W

SyoNE3

86 ~- SNOI1lVY¥YT123a

6g - SNOISNYdX3

(4] SHYi0L
I
DUELAS
JRAN S
938N0Y
HSNd
aNADHd
d0d
DHYNYR
[¥vy103aQ

O v T DWW N~
-~

SNOTLVATLOY Od vl

AHYANGS TYNTZ

&k ok

